Sample: 1
ID: X00016469670
Recall: 95.74%
Precision: 95.65%
Hmean: 95.70%
Sample: 2
ID: X00016469671
Recall: 80.00%
Precision: 80.00%
Hmean: 80.00%
Sample: 3
ID: X51005200931
Recall: 81.48%
Precision: 80.49%
Hmean: 80.98%
Sample: 4
ID: X51005230605
Recall: 70.45%
Precision: 72.09%
Hmean: 71.26%
Sample: 5
ID: X51005230616
Recall: 95.65%
Precision: 93.62%
Hmean: 94.62%
Sample: 6
ID: X51005230621
Recall: 92.59%
Precision: 96.15%
Hmean: 94.34%
Sample: 7
ID: X51005230648
Recall: 100.00%
Precision: 100.00%
Hmean: 100.00%
Sample: 8
ID: X51005230657
Recall: 96.14%
Precision: 99.25%
Hmean: 97.67%
Sample: 9
ID: X51005230659
Recall: 97.22%
Precision: 97.14%
Hmean: 97.18%
Sample: 10
ID: X51005268275
Recall: 88.99%
Precision: 90.85%
Hmean: 89.91%
Sample: 11
ID: X51005268408
Recall: 95.79%
Precision: 94.63%
Hmean: 95.21%
Sample: 12
ID: X51005288570
Sample: 13
ID: X51005301666
Recall: 87.87%
Precision: 91.83%
Hmean: 89.80%
Sample: 14
ID: X51005337867
Recall: 97.70%
Precision: 97.00%
Hmean: 97.35%
Sample: 15
ID: X51005337877
Sample: 16
ID: X51005361906
Recall: 90.86%
Precision: 91.71%
Hmean: 91.28%
Sample: 17
ID: X51005361908
Recall: 91.80%
Precision: 93.33%
Hmean: 92.56%
Sample: 18
ID: X51005361912
Recall: 86.77%
Precision: 90.53%
Hmean: 88.61%
Sample: 19
ID: X51005361923
Sample: 20
ID: X51005365187
Recall: 97.17%
Precision: 97.09%
Hmean: 97.13%