- Task 1 - Single Page Document VQA
- Task 2 - Document Collection VQA
- Task 3 - Infographics VQA
- Task 4 - MP-DocVQA
method: Human Performance2022-03-02
Authors: DocVQA Organizers
Affiliation: CVC-UAB, IIIT Hyderabad
Email: docvqa@cvc.uab.es
Description: Human performance as reported in InfographicVQA paper
method: InternVL2.5-78B-MPO (generalist)2024-12-24
Authors: InternVL team
Affiliation: Shanghai AI Laboratory & Tsinghua University
Email: wangweiyun@pjlab.org.cn
Description: InternVL2.5-MPO: Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization
method: InternVL2-Pro (generalist)2024-06-30
Authors: InternVL team
Affiliation: Shanghai AI Laboratory & Sensetime & Tsinghua University
Email: czcz94cz@gmail.com
Description: InternVL Family: Closing the Gap to Commercial Multimodal Models with Open-Source Suites —— A Pioneering Open-Source Alternative to GPT-4V
Demo: https://internvl.opengvlab.com/
Code: https://github.com/OpenGVLab/InternVL
Model: https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5
Answer type | Evidence | Operation | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | Method | Score | Image span | Question span | Multiple spans | Non span | Table/List | Textual | Visual object | Figure | Map | Comparison | Arithmetic | Counting | |||
2022-03-02 | Human Performance | 0.9718 | 0.9745 | 0.9777 | 0.9335 | 0.9716 | 0.9780 | 0.9789 | 0.9770 | 0.9699 | 0.9433 | 0.9712 | 0.9837 | 0.9544 | |||
2024-12-24 | InternVL2.5-78B-MPO (generalist) | 0.8428 | 0.8765 | 0.8753 | 0.6977 | 0.7357 | 0.8313 | 0.9247 | 0.8398 | 0.8229 | 0.7338 | 0.7280 | 0.8812 | 0.5865 | |||
2024-06-30 | InternVL2-Pro (generalist) | 0.8334 | 0.8681 | 0.8929 | 0.7350 | 0.6969 | 0.8335 | 0.9260 | 0.7757 | 0.8093 | 0.7186 | 0.7301 | 0.8584 | 0.5368 | |||
2024-09-25 | Molmo-72B | 0.8186 | 0.8513 | 0.8827 | 0.6821 | 0.7041 | 0.8184 | 0.9136 | 0.8062 | 0.7945 | 0.6960 | 0.7054 | 0.8188 | 0.5930 | |||
2024-12-13 | DeepSeek-VL2 | 0.7814 | 0.8189 | 0.8010 | 0.6989 | 0.6363 | 0.7935 | 0.9041 | 0.7371 | 0.7434 | 0.6327 | 0.6206 | 0.7282 | 0.5326 | |||
2024-04-27 | InternVL-1.5-Plus (generalist) | 0.7574 | 0.7989 | 0.8124 | 0.6425 | 0.5987 | 0.7544 | 0.8733 | 0.7306 | 0.7234 | 0.6216 | 0.6065 | 0.7386 | 0.4623 | |||
2024-05-31 | GPT-4 Vision Turbo + Amazon Textract OCR | 0.7191 | 0.7575 | 0.7795 | 0.6591 | 0.5553 | 0.7183 | 0.8201 | 0.6696 | 0.6904 | 0.6926 | 0.5815 | 0.6759 | 0.4281 | |||
2024-11-01 | MLCD-Embodied-7B: Multi-label Cluster Discrimination for Visual Representation Learning | 0.6998 | 0.7330 | 0.7930 | 0.5955 | 0.5564 | 0.6951 | 0.8271 | 0.6654 | 0.6614 | 0.5495 | 0.5523 | 0.6350 | 0.4905 | |||
2023-11-15 | SMoLA-PaLI-X Specialist Model | 0.6621 | 0.7166 | 0.7252 | 0.5838 | 0.4292 | 0.6448 | 0.8261 | 0.6714 | 0.6110 | 0.5065 | 0.5238 | 0.5054 | 0.3506 | |||
2024-02-10 | ScreenAI 5B | 0.6590 | 0.7162 | 0.7247 | 0.5734 | 0.4140 | 0.6525 | 0.8315 | 0.5968 | 0.6020 | 0.4467 | 0.4815 | 0.5303 | 0.3000 | |||
2023-12-07 | SMoLA-PaLI-X Generalist Model | 0.6556 | 0.7107 | 0.7228 | 0.5642 | 0.4197 | 0.6200 | 0.8237 | 0.6710 | 0.6095 | 0.5246 | 0.5159 | 0.4988 | 0.3372 | |||
2021-04-11 | Applica.ai TILT | 0.6120 | 0.6765 | 0.6419 | 0.4391 | 0.3832 | 0.5917 | 0.7916 | 0.4545 | 0.5654 | 0.4480 | 0.4801 | 0.4958 | 0.2652 | |||
2024-07-22 | Snowflake Arctic-TILT 0.8B | 0.5695 | 0.6274 | 0.6074 | 0.4123 | 0.3653 | 0.5478 | 0.7530 | 0.4204 | 0.5109 | 0.4410 | 0.4350 | 0.5042 | 0.2238 | |||
2023-08-20 | PaLI-X (Google Research, Single Generative Model) | 0.5477 | 0.5940 | 0.6950 | 0.4122 | 0.3534 | 0.5145 | 0.6891 | 0.6373 | 0.5040 | 0.4013 | 0.4290 | 0.4053 | 0.3091 | |||
2022-03-03 | InfographicVQA paper model | 0.2720 | 0.3278 | 0.2386 | 0.0450 | 0.1371 | 0.2400 | 0.3626 | 0.1705 | 0.2551 | 0.2205 | 0.1836 | 0.1559 | 0.1140 |