R.R.C. Robust Reading Competition
  • Home (current)
  • Challenges
    • DocVQA2020-23
    • ReST2023
    • SVRD2023
    • DSText2023
    • DUDE 😎2023
    • NewsVideoQA2023
    • RoadText2023
    • DocILE2023
    • HierText2022
    • Out of Vocabulary2022
    • ST-VQA2019
    • MLT2019
    • LSVT2019
    • ArT2019
    • SROIE2019
    • ReCTS2019
    • COCO-Text2017
    • DeTEXT2017
    • DOST2017
    • FSNS2017
    • MLT2017
    • IEHHR2017
    • Incidental Scene Text2015
    • Text in Videos2013-2015
    • Focused Scene Text2013-2015
    • Born-Digital Images (Web and Email)2011-2015
  • Register
    ReST 2023
  • Overview
  • Tasks
  • Downloads
  • Results
  • My Methods
  • Organizers
  • Home
  • ReST
  • Results
  • Task 1 - Seal Title Text Detection
  • Method: DB with SegFormer
  • Task 1 - Seal Title Text Detection - Method: DB with SegFormer
  • Method info
  • Samples list
  • Per sample details

method: DB with SegFormer2023-03-21

Authors: Sehwan Joo, Wonho Song

Affiliation: Upstage AI

Email: sehwan.joo@upstage.ai

Description: We use the DB [1] architecture with the decoder changed to SegFormer[2] and Unet. In addition, we use SwinTransformer and EfficientNet. Finally, we ensemble these models.

M. Liao, Z. Wan, C. Yao, K. Chen, and X. Bai. Real-time scene text detection with differentiable binarization. In AAAI Conf. on Artificial Intelligence, pages 11474–11481, 2020.

Zhiqi Li, Wenhai Wang, Enze Xie, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, Tong Lu, and Ping Luo. Panoptic segformer. arXiv preprint arXiv:2109.03814, 2021.