- Task 1 - Video mode Localisation
- Task 2 - Video Mode End-to-End
- Task 3 - Still image mode Localisation
- Task 4 - Still image mode Word Recognition
- Task 5 - Still image mode End-to-End
Inactive evaluations
method: CLOVA-AI2018-11-30
Authors: Junyeop Lee, Jeonghun Baek, Sungrae Park, Moonbin Yim, Seonghyeon Kim, Hwalsuk Lee
Description: Attention based model
method: Clova AI / Lens2018-10-05
Authors: Seolki Baek, Geonmo Gu, Jeongo Seo
Description: Description: Our model is featured by CNN/RNN-based encoder and Hybrid CTC/Attention decoder. Moreover we proposed new text synthesis tools to make our model robust and high performance in the wild.
method: google vision api2017-07-24
Authors: morimoto
Description: google vision api
Description Paper Source Code
Date | Method | Total Edit distance (case sensitive) | Correctly Recognised Words (case sensitive) | T.E.D. (case insensitive) | C.R.W. (case insensitive) | |||
---|---|---|---|---|---|---|---|---|
2018-11-30 | CLOVA-AI | 59.9417 | 66.88% | 59.9417 | 66.88% | |||
2018-10-05 | Clova AI / Lens | 96.3405 | 52.19% | 96.3405 | 52.19% | |||
2017-07-24 | google vision api | 274.5492 | 7.19% | 274.5492 | 7.19% | |||
2017-08-31 | tesseract 4.00 (LSTM) | 326.7456 | 1.56% | 326.7456 | 1.56% | |||
2017-09-02 | DictNet | 374.9119 | 0.31% | 374.7119 | 0.31% |